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Multiscale diffusion Monte Carlo simulation of epitaxial growth
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Abstract

We present an accelerated kinetic Monte Carlo (KMC) simulation algorithm for molecular beam epitaxial growth dur-
ing step flow. The acceleration is achieved by allowing adatoms far from the step edges to execute larger jumps with cor-
respondingly reduced rates. The computational complexities of a number of different algorithmic implementations are
analyzed and compared. The scaling of the accelerated algorithms are verified by test runs performed on a one-dimensional
model. Both performance and accuracy are evaluated. One to two orders of magnitude increases of efficiency are achieved
while preserving physical accuracy.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This paper describes an accelerated kinetic Monte Carlo (KMC) simulation algorithm for molecular beam
epitaxial (MBE) growth in the step flow regime. KMC simulation has been used extensively for the modeling
of epitaxial growth [1–6], and has been shown to reproduce quantitatively accurate results including fluctua-
tions. Capturing these important atomic scale details is beyond the reach of continuous Burton–Cabrera–
Frank models [7] and limits their ability to model the detailed processes that control surface evolution during
MBE. However, the atomistic nature of KMC simulation and the high diffusion rate typical in these systems
impose significant computational cost, which severely restricts the spatial and temporal scale of the simulation.
Recently some new approaches have been developed to overcome these limitations. Some of these methods
couple stochastic KMC simulation to continuous BCF models in order to expand the scale of simulation
[8–10]. Others introduce fluctuations into continuum methods [11]. Still others attempt to derive fully coarse
grained equations from atomistic model by treating probability densities [12–14]. These methods have shown
some considerable success in grappling with the complexity of coupling these two extremely different simula-
tion schemes. However, these complications often limit the degree of acceleration achieved and reduce the
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accuracy of simulated fluctuations. In most cases the computational intensity of these algorithms has only
been reported anecdotally and the scaling of the algorithms has not been analyzed.

The algorithm we present is motivated by a method developed in the context of dendritic solidification by
Plapp and Karma [15] who were in turn inspired by techniques applied in quantum Monte Carlo simulations.
In that algorithm an ensemble of off-lattice random walkers are used to simulate a diffusion field. In our algo-
rithm, adatoms remain on-lattice and represent actual adsorbed species, but, as in the Plapp and Karma work,
we take advantage of the fact that the farther these random walkers reside from the boundary of interest (in
our case the step edge, in theirs the solidification front) the less temporal resolution is required in simulating
their motion. In this respect the method is similar to a method developed simultaneously by DeVita et al.
which also treats the motion of ad atoms by a similar approximation [16]. This results in major gains in com-
putational efficiency because the adatoms of primary physical interest, those adjacent to the step edge, only
comprise a small fraction of the total adatoms in the system. The fluctuations of these atoms are the most crit-
ical for accurately modeling the step flow process. By requiring that adatoms far away from the step edges take
larger jumps with rates proportional to the inverse square of the step size, we are able to greatly accelerate
KMC simulation of epitaxial growth while retaining the accuracy of physical results, including stochastic fluc-
tuations in the region of primary physical interest.

In Section 2, we review the classic KMC algorithm for epitaxial growth, and analyze its computational
complexity. In Section 3, we describe a variety of implementation schemes of our accelerated algorithms
and their respective computational complexities. In Section 4, we verify our accelerated algorithms and com-
plexity analysis by comparing the physical results and performances of accelerated algorithms with continuum
models and classical KMC simulation.

2. The standard rejection free KMC method for simulating epitaxial growth

For simplicity, we choose the epitaxial growth on one-dimensional surface as our model system and assume
there is no direct interaction between atoms. This allows us to compare our results to an analytic continuum
model to verify that the average behavior is accurately simulated. By considering this simplified system we are
also able to perform a detailed analysis of the computational complexity of the algorithm. This restricted
model is meant to serve as a ‘‘proof of concept’’ of the algorithm. In the conclusions we will discuss ways
in which this algorithm can potentially be extended to more realistic systems, i.e., two-dimensional surfaces
and systems in which the effects of nucleation are not negligible.

In the system we consider there are four possible events:

1. Hopping of adatoms on the surface.
2. Attachment of adatoms to the edge from both the upper and lower terraces.
3. Detachment of atoms from the edge. (In our algorithm we assume an effectively infinitely asymmetric Ehr-

lich–Schwoebel barrier [17–19] and the ejected adatom always occupies the lower terrace. This is an arbi-
trary choice which is not essential to the model or the analysis.)

4. Flux of atoms to the surface from the molecular beam.

Since we assume no interaction between atoms, there are no nucleation events. Again for simplicity, we
assume that attachment always follows when an adatom reaches the edge, and the event takes negligible time.
The steps can occupy the same location, effectively step bunching, and they may move through each other with
no interaction between steps other than the effective interaction via the adatoms. Periodic boundaries are
implemented to allow continuous step flow. If we specify the rates of the other three kinds of events, then
the standard BKL algorithm [20] for KMC simulation proceeds by:

1. Computing the total rate of the system from the rates of all the possible transitions:
Rtot ¼ DN a þ RdN e þ FN ; ð1Þ

where D is the hopping rate; Na is the number of adatoms on the surface; Rd is the detachment rate; Ne is the
number of edges, F is the flux rate, and N is the total number of sites on the surface.
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2. Advancing the time by �ln(r)/Rtot, where the r is a random number in the range from zero to one.
3. Choosing an event with probability proportional to the rate and execute the event.
4. Repeat from step 1.

The speed of the KMC simulation depends on two factors: the total rate, which is proportional to the num-
ber of simulated events required for a certain period of time, and the average time required for the simulation
of one event. For this system, it takes constant time to locate and execute the event since there are only three
kinds of events with fixed rate to simulate each, and all events only induce strictly local changes.

We would like to know the total number of simulated events required to deposit one layer of atoms.
Note that at equilibrium, the rate at which the adatoms are incorporated into the surface should equal
the flux rate. So it takes 1/F time to deposit one layer. During this period, there will be NeRd/F detachment
events, NeRd/F + N attachment events, and NaD/F diffusion events on average. We can approximate Na by
treating the edges as moving sinks and sources and solving for the density function in the moving reference
frame traveling along with the terrace. The continuum diffusion equation is then formulated as follows:
oc
ot
¼ D

2
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ox2
þ FL

oc
ox
þ F . ð2Þ
Here L = N/Ne is the average terrace length between the edges. The first term on the right-hand side of Eq. (2)
models the adatom diffusion. The second term models the convection due to the fact that we are in the refer-
ence frame of the terrace moving with velocity FL, and the third term models the flux of adatoms to the sur-
face. The boundary conditions constrain the adatom flux at the edges:
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where fx denotes the flux of adatoms in the x direction. Solving these equations in steady state we can obtain
an exact, albeit unwieldy, solution for the adatom density in the continuum limit. We find that by keeping only
the dominant terms the average density derived from this exact solution can be approximated by
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as long as we assume that FL/D� 1. Consequently, the total number of diffusion events required to deposit
one layer is
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When deposition is sufficiently slow that FL2/D� 1 and the detachment rate is small compared to the diffu-
sivity such that Rd/D� 1 this expression can be further simplified and it can be shown that the adatom den-
sity scales as
N a

N
¼ �q � Rd

D
þ FL2

6D
ð7Þ
and number of diffusion events scales as
O
RdN

F
þ NL2

6

� �
. ð8Þ
Fig. 1 shows the adatom density as a function of the terrace length as calculated by KMC and continuum
diffusion. When the density reaches �0.3 the assumption that FL2/D� 1 no longer holds and the scaling
in Eq. (7) breaks down. However the description given by Eq. (5) holds to higher adatom densities, and hence
larger terrace lengths. In what follows we will refer to instances in which FL2/Rd� 1 as the detachment dom-
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Fig. 1. Simple KMC simulation results of adatom density as a function of terrace length (L). The line shows the continuum approximation
from Eq. (5) for comparison.
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inated regime and the opposite limit as the deposition dominated regime. In both regimes, the computational
cost of the standard rejection free algorithm is dominated by the diffusion of adatoms, and the standard rejec-
tion free simulation can be very slow even for systems with only a few hundred adatoms on the surface on
average.

3. Analysis of the computational complexity of the accelerated algorithms

We develop our accelerated algorithm from the idea that the detailed hopping of adatoms far away from
the edges are not important to the overall behavior of the system, especially in this model system where the
adatoms are coupled to each other only through the movements of the edges. So we should be able to approx-
imate the system with acceptable errors while reducing the total rate significantly by making adatoms far away
from the edges jump less frequently but in larger steps. Since diffusion theory dictates that the root-mean-
square displacement of the atom is proportional to the square root of the number of steps taken, we modify
the system such that adatoms far away from the edges make jumps of size j instead of 1, with rate D/j2 instead
of D. To make sure that these coarse-grained diffusion events are physical, we must make sure that j < dmin, the
distance to the closest edge.

The simplest way to set up the step sizes is to choose jump size such that j is equal to the larger of (dmin � 1)
or 1. We will refer to this method as ‘‘linear zoning’’ (LZ). In this case, almost all adatoms have different rates,
so it takes O(logNa) time to choose the adatom to diffuse if we arrange the rates of the adatoms into a binary
tree and apply a standard divide-and-conquer algorithm. On the other hand, the total computational time for
diffusion is greatly reduced. We can estimate the computational cost of the LZ method by integrating the den-
sity function derived from Eqs. (2)–(4) with the weight function:
wðxÞ ¼ dmin > 1 d�2
min;

dmin 6 1 1.

(
ð9Þ
By doing so, we find that the total number of diffusion events required to deposit one layer is on order
O
RdN e

F
þ N log L

� �
. ð10Þ
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In the deposition dominated regime this implies that for a given terrace length, L, the LZ algorithm scales as
O(N logN). However, when the total rate of the flux between the edges, FL, is significantly less than the
detachment rate, Rd, the number of diffusion events will remain roughly constant independent of N, and
the cost of diffusion is dominated by the cost of choosing adatoms and scales as O(log N).

These contributions must be weighed against the cost of attachment and detachment. For each attachment
and detachment event the rates and step sizes of almost all atoms in the region of the moved edge must be
modified. Thus attachment and detachment events take time on order N a=N e � �qL. The total number of
attachment and detachment events per deposited layer is always unchanged
N þ 2N eRd

F
ð11Þ
no matter what accelerated diffusion algorithm we use. Overall, when N is held fixed and L is varied, in the
detachment dominated regime the cost of edge movements dominates the computational complexity of LZ,
and multiplying Eq. (11) by Na/Ne we find that it takes
O N a Lþ 2Rd

F

� �� �
ð12Þ
time to deposit one layer. Therefore in the detachment dominated regime the cost of the algorithm scales as
O(Na) which grows linearly with the system size, N. In the deposition dominated regime the computation time
scales with the system size multiplied by the terrace length.

The consequence of the computationally expensive attachment and detachment events of LZ algorithm is
a continued linear scaling of the algorithm on system size or worse than linear scaling if the terrace length
grows with system size. This motivates us to pursue a more efficient algorithm. The LZ algorithm requires
at least linear time to move the edge because adatoms at different distances from the edge are all given dif-
ferent rates and step sizes. An obvious option is to divide the surface into larger rate zones so that whenever
edge moves, only the rates and step sizes of the adatoms at the margins of the rate zones need to be mod-
ified. We choose to divide the surface into rate zones using a geometric series, namely 2n, resulting in
approximately Ne logL zones. Under the constraint j < dmin, we set j = 1,2,6,14,30, . . . = max(1,2n � 2).
We will refer to this method as ‘‘geometric zoning’’ (GZ). By integrating the density derived from Eqs.
(2)–(4) with the rates of the zones as the weight function, we find that the total number of diffusion events
required to deposit one layer scales identically to that calculated for the LZ algorithm in Eq. (10). The num-
ber of diffusion events still remains roughly constant with respect to N unless the system is in the deposition
dominated regime.

In our implementation of the GZ algorithm we retain the binary rate tree of the LZ algorithm, so it still
takes O(logNa) � O(logN) time to choose the adatom to diffuse. Therefore the time for diffusion in this
scheme is O((NeRd/F + N logL) logN). Using this scheme we only have to update the rates and the step sizes
of the adatoms at the margins of the rate zones for attachment and detachment events. Algorithmically, two
operations are required for these updates:

1. Check the margins of the rate zones in the region of the moved edge. If there are adatoms present, then
2. Update the rates and the step sizes of these adatoms.

The first clearly takes O(logL) time. We can estimate the total number of adatoms on the margins of the rate
zones in the region of the moved edge and therefore the computational complexity of the second operation by
taking the finite summation 2

P
qðxnÞ over xn < L/2 where q is the density function derived from Eqs. (2)–(4)

and xn = 2(2n � 1). Since the adatom density is bounded by approximately 0.5 as terrance length increases in
Eq. (5) (see Fig. 1), we can approximate q by a constant, �q. This gives us the expression �q log L. Since we have
to update the binary tree from the leaf (adatom) all the way to the root with this implementation, it takes
O(logNa) time to update an adatom. Therefore, the second operation takes Oð�q log N a log LÞ time. Since
the total number of attachment and detachment events is NeRd/F + N, the total cost of all edge movements
scales as O((NeRd/F + N) logN logL). This is the dominant contribution to the computational complexity.
Notice that the term that is superlinear in N will not show up unless the system is in the deposition dominated
regime. Therefore the GZ algorithm is anticipated to always have superior scaling with respect to the LZ algo-



Table 1
Computational complexities of algorithms described in text

Standard rejection free KMC Linear zoning (LZ) Geometric zoning (GZ)

Diffusion events O(NaD/F) O(NeRd/F + N logL) O(NeRd/F + N logL)
Cost per diffusion event O(1) O(logN) O(logN)
Attachment/detachment events O(2NeRd/F + N) O(2NeRd/F + N) O(2NeRd/F + N)
Cost per attachment/detachment O(1) O(Na/Ne) O((Na/N) logNa logL)
Computational complexity O(NaD/F) O(Na(L + Rd/F)) O((N + NeRd/F) logN logL)
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rithm in the detachment dominated regime, and will have better scaling in the deposition dominated regime
when the terrace length scales with system size. It has somewhat worse scaling in the deposition limited regime
when the terrace length is independent of system size.

To test out how the accelerated algorithm using geometric zoning (GZ) affects the physical result, we also
ran this implementation with a modification which retains the sizes of the rate zones of the original but mod-
ifies the step sizes to be the size of the previous rate zone. In other words, the sizes of the rate zones are still
described by a geometric series 2n, but the step sizes correspond to the series 2n�1. This is chosen in order to
force every newly added adatom to pass through each rate zone before it attaches to the edge. We believe the
added detail results in a more accurate description of diffusion to the step edge. Again by integrating the den-
sity with the rates of the zones as the weight function, we find that the total number diffusion events scales as in
Eq. (10). Therefore, the computational complexity of this variant, which we will call GZ2 is the same as that of
the original, which we will refer to as GZ1. Table 1 summarizes the computational complexities of different
diffusion algorithms discussed in this section.

4. Verification of acceleration and scaling of the algorithms

In order to justify the approximations and the computational complexity analysis we tested our algorithms
against the standard rejection free KMC simulation and compared the performances and equilibrium statis-
tics. We used the parameters N = 1000, Rd/D = 0.1, Ne = 2 (two edges placed at equal distances to each
other), while we varied D/F. The simulation runs until a total of 500 layers are deposited. In order to make
sure that the statistics accurately reflect the equilibrium state instead of the transient phase, the statistics were
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Fig. 2. Average adatom density vs. the ratio of the hopping rate to the deposition rate (D/F). Results are given for the standard rejection
free KMC results (r), LZ (·), GZ1 (h) and GZ2 (n) algorithms. For these simulations N = 1000, Rd/D = 0.1, Ne = 2 and 500 layers were
deposited. The results are compared to the continuum approximation given in Eq. (5).
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Fig. 3. Standard deviation in adatom density vs. the ratio of the hopping rate to the deposition rate (D/F). Results are given for the
standard rejection free KMC results (r), LZ (·), GZ1 (h) and GZ2 (n) algorithms. All parameters are identical to those for Fig. 2.
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Fig. 4. Standard deviation in terrace length (L) vs. the ratio of the hopping rate to the flux rate (D/F). Results are given for the standard
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taken only after the first layer had deposited. Figs. 2–4 represent the physical statistics of the simulation while
Figs. 5–7 represent the performance of the algorithms.

We can see from Figs. 2–4 that our accelerated algorithms accurately reproduced the physical statistics of
the standard rejection free KMC algorithm, especially in the region of high D/F ratio. As expected, GZ2 is
more accurate than GZ1, which is in turn more accurate than LZ, since LZ has the largest step sizes on aver-
age while GZ2 has the smallest step sizes among the accelerated algorithms. Nevertheless, even LZ deviates no
more than 10% in average adatom density in Fig. 2 and no more than 16% in the standard deviation of the
terrace length in Fig. 4. The accelerated algorithms exhibit a tendency to underestimate adatom density while
overestimating the standard deviation of the terrace length when D/F is small. The continuum approximation
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obtained in Eq. (5) from solving diffusion equation with moving sinks and sources at the boundary is also
shown in Figs. 1 and 2 for comparison with the simulated data.

As we can see from Figs. 5 and 6, the simulation time required grows linearly with D/F, the de-dimensional-
ized diffusion rate. This is expected since we fixed the value of Rd/F to be 0.1D/F, and the computational com-
plexities of algorithms all roughly depend linearly on Rd/F. A 40- to 20-fold acceleration is achieved with LZ,
while the acceleration of GZ1 reaches 100- to 40-fold. From Fig. 7, we can see that the ratio of acceleration with
respect to the standard rejection free KMC simulations for all three accelerated algorithms is proportional to Na.

In addition to simulation time, we also recorded the total number of events simulated in order to compare
the average time required to simulate an event for each algorithm. We found that the simulation speed in
terms of events/s remains quite constant for standard rejection free KMC algorithm, GZ2, and GZ1, at
approximately 1.45, 0.65, and 0.59 million events/s on our test platforms, respectively. As expected, although
the standard rejection free KMC algorithm is the fastest in terms of events/s, it is nevertheless the slowest in
terms of simulation time due to the staggering total number of simulated events required. GZ2 runs slightly
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faster than GZ1 in terms of events/second, due to the increased number of computationally cheaper diffusion
events. LZ is the slowest in terms of events/s, and the actual speed ranges from 0.17 to 0.23 million events/s as
D/F goes from 105 to 106. This is not surprising since the computational cost of LZ is dominated by attach-
ment and detachment events, which happen proportionally less frequently when D/F is higher.

From Fig. 8 we can see the scaling of these algorithms with respect to size of the systems. We can make
direct comparisons to our predictions for the scaling as given in Table 1. As expected, the standard rejection
free algorithm scales with N a � �qN , and the LZ algorithm scales with Na (N + 2NeRd/F). Hence both scale
linearly or worse with respect to size due to increasing number of surface atoms. GZ1 and GZ2 scale as
0.1

1

10

100

1000

100 1000 10000

N

C
o

m
p

u
ta

ti
o

n
 t

im
e 

p
er

 la
ye

r 
(s

)

Fig. 8. Log–log graph of the time scaling with respect to N. In each simulation the number of edges was kept constant; Ne = 2. For N 6 1000,
500 layers were deposited, while for N > 1000, 20 layers were deposited. Results are given for the LZ (·), GZ1 (h) and GZ2 (n) algorithms as
well as the standard rejection free algorithm (¤). The lines provide comparisons to the predictions given in the text and Table 1.
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(N + 2NeRd/F) logN logL, essentially logarithmically with size, as expected in the detachment dominated
regime. By comparing these predictions we can obtain an estimate for when the accelerated algorithms will
be useful. At system sizes smaller than approximately 30 lattice spacings, i.e., terrace lengths smaller than
15 lattice spacings, the acceleration schemes are no longer advantageous.

5. Conclusions

By balancing the cost of diffusion events and edge movements with careful assignment of step sizes and
rates according to the relative distance to the closest step edge, we have achieved an accelerated KMC algo-
rithm (GZ1 and GZ2) for epitaxial growth orders of magnitudes faster than the classical KMC algorithm and
superior in terms of computational complexity. We have compared the algorithmic scaling to predictions
based on analysis of the various algorithms., We have also compared the accuracy of the various algorithms.
GZ2 is more accurate than GZ1, which is in turn more accurate than LZ; the accelerated algorithms tend to
underestimate the adatom density by a small amount. Compared to similar algorithms that employ a coupling
of continuum and atomistic methodologies, as in [8], the method appears to provide more dramatic speedup
and increased accuracy when compared to the standard rejection free KMC algorithm. Since the acceleration
is achieved by modifying classical KMC algorithm rather than coupling between two distinct simulation algo-
rithms, it is easier to implement and does not require multiple representations for the adatoms.

The algorithms described have only been implemented under the simplified assumptions described above.
In order to be more generally applicable implementations need to be developed to simulate two-dimensional
surfaces and to include nucleation processes. Inclusion of two-dimensional surfaces seems straightforward
since domain decomposition techniques have been deployed in the context of a number of other simulation
methods including the parallelization of molecular dynamics [21]. While the details would be different, concep-
tually the problem would be similar. Introducing nucleation in such a model would be more complex, but
could be introduced effectively by introducing interaction events that represent the probability of an encounter
between two atoms much as in Ref. [12]. This probability would have to depend on their proximity to each
other and to other potential sinks. While the integrals needed to compute these probabilities could be complex,
they could certainly be numerically approximated. In any case, the methods are specific to the regime of step-
flow growth in which terrace lengths are long (15 or more lattice spacings by our estimate). The methods
would not provide significant acceleration to layer-by-layer growth dominated by nucleation events.
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